Adaptive Route Choices in Risky Traffic Networks: A Prospect Theory Approach
نویسندگان
چکیده
This paper deals with route choice models capturing travelers’ strategic behavior when adapting to revealed traffic conditions en route in a stochastic network. The strategic adaptive behavior is conceptualized as a routing policy, defined as a decision rule that maps from all possible revealed traffic conditions to the choices of next link out of decision nodes, given information access assumptions. In this paper, we use a specialized example where a variable message sign provides information about congestion status on outgoing links. We view the problem as choice under risk and present a routing policy choice model based on the cumulative prospect theory (CPT), where utility functions are nonlinear in probabilities and thus flexible attitudes toward risk can be captured. In order to illustrate the differences between routing policy and non-adaptive path choice models as well as differences between models based on expected utility (EU) theory and CPT, we estimate models based on synthetic data and compare them in terms of prediction results. There are large differences in path share predictions and the results demonstrate the flexibility of the CPT model to represent varying degrees of risk aversion and risk seeking depending on the outcome probabilities.
منابع مشابه
User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کاملA neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country
Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...
متن کاملOptimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach
Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critic...
متن کاملInformation Integration in Risky Choice: Identification and Stability
How is information integrated across the attributes of an option when making risky choices? In most descriptive models of decision under risk, information about risk, and reward is combined multiplicatively (e.g., expected value; expected utility theory, Bernouli, 1738/1954; subjective expected utility theory, Savage, 1954; Edwards, 1955; prospect theory, Kahneman and Tversky, 1979; rank-depend...
متن کاملEvolutionary Game Theory with Applications to Adaptive Routing
One of the most important problems in large communication networks like the Internet is the problem of routing traffic through the network. Current Internet technology based on the TCP protocol does not route traffic adaptively to the traffic pattern but uses fixed end-to-end routes and adjusts only the injection rates in order to avoid congestion. A more flexible approach uses load-adaptive re...
متن کامل